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ABSTRACT 
 

Weather forecasting becomes more and more indispensable to our lives and thus many approaches have 
been investigated so far to meet this high demand. Conventional methods proposed in the 1980s or earlier were 
mostly linear models and usually applied to deal with short-range prediction. With the development of 
information technology, many data mining techniques have been introduced aiming to improve the power and 
accuracy in prediction. In this paper, three daily meteorological time-series encompassing maximum 
temperature, minimum temperature, and rainfall spanning from 1981 to 1990 in Melbourne, Australia were 
utilized to verify the prediction potential of the incorporation of fuzzy sets and neural networks by deployment of 
the Recurrent Fuzzy Neural Network (RFNN). Good experimental results were achieved via the application of 
the RFNN model to weather time series forecasting. 
 
 
1. INTRODUCTION 

 
Weather forecasts and warnings are the most important services provided by the 

meteorological profession. Forecasts are used by government and industry to protect life and 
property and to improve the efficiency of operations, and by individuals to plan a wide range 
of daily activities. With the ongoing availability and increasing capacity of high performance 
computing, various methods have been proposed to satisfy the increasing demands of weather 
forecasting. Numerical Weather Prediction (NWP) method was considered as the best 
forecasting method for the day-to-day weather changes (Kalnay et al., 1990; Roads, 1986; 
Ghil et al., 1979). Marchuk (1970) presented numerical methods for weather forecasting 
several days in advance, which were based on a complete system of equations of 
hydrodynamics and thermodynamics, taking atmospheric moisture transfer and radiational 
effects into account. Klein et al. (1959, 1974) introduced the model that is usually called "the 
perfect prog method". The concurrent statistical relationship between the predictand and 
predictors is applied to model numerical output at, say, a projection of 36 hours to get an 
estimate of the predictand 36 hours after the data input time for the model. Another method is 
the analog forecasting that consists of searching for analogs to a present or preceding 
situation and then predicting weather for the forthcoming period based on the similar cases in 
the past. The forecast of 5-day mean temperature and 10-day precipitation totals for Hungary 
for the next month using this approach has been reported by Toth (1989) as a solution for 
long-range weather forecasting. As an advance in Model Output Statistics (MOS), which is 
an objective weather forecasting technique, Glahn and Lowry (1972) integrated MOS and 
screening regression to forecast the surface weather variables such as maximum temperature, 
probability of precipitation, surface wind, cloud amount and conditional probability of frozen 
precipitation. Vislocky and Fritsch (1997) developed a prototype advanced MOS system that 
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finished in 20th place out of 737 original entrants or better than approximately 97% of the 
human forecasters who entered the 1996–97 National Collegiate Weather Forecast Contest in 
the USA. The prototype system uses an optimal blend of aviation and nested grid model 
(NGM) MOS forecasts, explicit output from the NGM and Eta model (Black, 1994) 
guidance, and the latest surface weather observations from the forecast site. 

 
Each of the above methods has advantages and disadvantages, and what may be 

appropriate for one circumstance may not be appropriate for another. Generally, the major 
drawbacks of these measures, however, are their inherently linear characteristic and poor 
performance for long-range forecasting. With the development of information technology, 
many data mining techniques have been introduced to improve the power and accuracy of 
weather forecasting. 

 
This paper presents an application of one of the most effective methods belonging to 

machine learning, namely Recurrent Fuzzy Neural Network to weather forecasting. This 
incorporation between fuzzy set and neural network (Abraham, 2001; Buckley et al., 1994; 
Horikawa et al., 1992; Jain et al., 1998; Lin et al., 2004; Mandic et al., 2001; Medsker et al., 
2001) has been investigated for prediction using three daily meteorological time series in 
Melbourne, Australia over the period 1981 to 1990. In trying to predict the maximum 
temperature at the time point ( ) , two experimental scenarios were explored. The first 
scenario is that the predicted value (predictand) depends on its values in the past, i.e. 
predictors are maximum temperature at time points 

t

( )1−t , ( )2−t , …, ( . The second 
scenario is that the predictand depends on the values of parallel time series, i.e. predictors are 
maximum temperature, minimum temperature, and rainfall at time point ( . The results of 
experiments are stated in section 3. Firstly, we describe the RFNN model applying for 
weather time series forecasting in the next section. 

)

)

nt −

1−t

 
 
2. RECURRENT FUZZY NEURAL NETWORK FOR FORECASTING 
 
2.1 The RFNN configuration 
 

The neural network model diagrammed in Figure 1 is a structure for approximating the 
nonlinear function  where N and P are the number of inputs and outputs, 
respectively. There are four layers of RFNN in total; each layer consists of from one to some 
nodes, i.e. neurons, which are computational units. Let us denote  and  as input and 
output values of the i

PN RRF →:

)(k
iu )(k

io
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where M is the number of fuzzy rules,  and ijm ijσ  are the centre and width of the Gaussian 
membership function, and 
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where ijθ  is the weight of the recurrent node. 
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Layer 3 
Operator AND is used to multiply outputs of layer 2 together. 
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Layer 4 
The nodes on layer 4 undertake the defuzzification function 
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All four types of parameters ( ijijijm θσ ,,  and ) need to be trained over the whole (N 

+ N.M + M + P) nodes of the RFNN. 
jkw

 

 

 

 

G

∏

Σ

G G G G G

∏ ∏

Σ

Y1 YP 

XNX1

Z-1 

ijθ

Layer 1 

Layer 2 

Layer 3 

Layer 4 

Gaussian 
membership 
function 

Recurrent 
node 

AND 
operator 

Defuzzification 

 
Figure 1. The four layers in the RFNN configuration. Each node in layer 2 at time point 
(t) contains the previous information of itself at time point (t - 1) and is termed a 
“recurrent” node. 
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2.2 Training process 
 

Supervised gradient descent learning was utilized to tune the parameters relying upon 
the aim of minimizing the squared error function: 

( ) ( ) ( )( )
2)4(
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12
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⎝
⎛ −=−= oyxFxfxE  

where  is the real value and  is the value computed from the RFNN. ( ) yxf = ( ) )(oxF 4=
 
The parameters are updated via the formula: 

ξ
μξξ

∂
∂

−=+
E

ttt )()1(  

where tμ  and ( )tξ  are learning rate and parameter value, respectively, at iteration t. 
 
The momentum technique was also integrated in the parameters tuning process to 

increase the convergent speed (Qian, 1999). The learning fomula with momentum is as 
follows: 

)(.)()1( tE
ttt ξε

ξ
μξξ Δ+

∂
∂

−=+  

where ε is momentum coefficient. 
 
2.3 RFNN for weather forecasting 
 

Three daily meteorological time series in Melbourne, Australia consisting of maximum 
temperature, minimum temperature and rainfall (Figure 2, 3, and 4, respectively) were used 
to verify the RFNN approach under two scenarios. 

 
Scenario 1: The maximum temperature at time point (t) was considered as the function 

F1 of three determinants consisting of maximum temperature, minimum temperature and 
rainfall at time point (t – 1). 

 
[ ]1) - rainfall(t 1), - min_temp(t 1), - max_temp(t1F  )max_temp(t =  

 
Scenario 2: The maximum temperature at time point (t) was considered as the function 

F2 of its values in the past, at time points (t – 1), (t – 2), …, (t – n). A broad range of n has 
been tested in order to find the best n for approximation. Results indicated that the higher the 
value of n, the more time-consuming is the training process whilst accuracy is not improved 
and that the cases of n from 3 to 7 show nearly same accuracy. Hence, n = 3 is chosen as the 
most effective in terms of accuracy and processing time. 

 
[ ]3) - max_temp(t2), - max_temp(t 1), - max_temp(t2F  )max_temp(t =  

 
The 3650 data samples were partitioned into a training set and a validating set. The 

validating set accounted for exactly 10% of the total (365 samples at the end of the period 
1981 to 1990). 

Centres and widths (  and ijm ijσ ) of the Gaussian membership functions are set up 
based respectively on mean and standard deviation of the data series whereas remaining 
weights ( ijθ  and ) are initialized randomly. jkw
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Figure 2. Daily maximum temperature measured in degrees Celsius (1981-1990). 
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Figure 3. Daily minimum temperature measured in degrees Celsius (1981-1990). 
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Figure 4. Daily rainfall gauged in milimetres (1981-1990). 
 
 
3. RESULTS AND CONCLUSIONS 
 

The testing results were displayed in Table 1 for both scenario 1 and scenario 2. All 
experiments were with the RFNN configuration: learning rate: 10-5, momentum coefficient: 
0.5, number of iterative cycles: 300, number of testing data samples: 365. 

 
Table 1. Testing results performing on scenario 1 and scenario 2 for maximum 

temperature forecasting. 
 

The number of nodes in Average accuracy on 
testing data for 

Layer 1 
(N) 

Layer 2 
(N*M) 

Layer 3(*)

(M) 
Layer 4 

(P) Scenario 1 Scenario 2 

Approximate
training 
duration 

3 60 20 1 84.37% 86.11% 2 min. 27 sec.

3 150 50 1 82.81% 83.15% 5 min. 57 sec.

3 240 80 1 76.28% 81.56% 9 min. 36 sec.
(*) The number of nodes in the layer 3 corresponds to the number of fuzzy rules: M. 

 
The average accuracy is defined by the following formula: 
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Figure 5. Scenario 2: Predicted data in comparison with real data in the case of 20 fuzzy 
rules for maximum temperature forecasting performing on 365 data samples at the end 
the period. 
 

The training duration is in proportion to the number of fuzzy rules. More fuzzy rules, 
the more the number of parameters need to be tuned. The high number of fuzzy rules in 
RFNN is not surely congruent with the high accuracy of forecasting, especially in the case 
part of parameters of the model is initialized randomly. 

Comparing the experimental results, scenario 2 always issued the better outcomes than 
scenario 1. This is contradictory with the assumption that the forecast should be more 
accurate if there are more relevant inputs modelled. Yet, in this circumstance, we could 
realize that the rainfall data is very noisy and nonlinear and hence the impact of rainfall on 
temperature is not useful during the deployment of the neural network model.  

The approach has opened to the forecaster the new measure of benefiting from the 
advantages of the RFNN for prediction. Moreover, the online weather forecast system can be 
thought to commence using this approach since the time of constructing the model is just 
around some minutes to meet the expected precision. The long-term forecast is another strong 
point of the model when 1-year period of forecast can be reached with the nearly same 
accuracy over the period. 
 
 
4. REFERENCES 
 
Abraham A., 2001. Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques, Connectionist 

Models of Neurons, Learning Processes, and Artificial Intelligence, Springer-Verlag Germany, 
Jose Mira and Alberto Prieto (Eds), Spain, pp. 269-276. 

Black, T. L., 1994. The new NMC mesoscale Eta model: Description and forecast examples. Weather 
Forecasting, vol. 9, pp. 265–278. 

 
 Weather Time Series Forecasting Using Recurrent Fuzzy Neural Network 



Buckley, J., and Hayashi, Y., 1994. Fuzzy Neural Networks: A Survey, Fuzzy Set. Syst., vol. 66, no. 1, 
pp. 1-13. 

Freeman, J. A. and Skapura, D. M. 1991. Neural Networks: Algorithms, Applications, and 
Programming Techniques. Addison-Wesley Publishing Company, Inc., USA. 

Ghil, M., Halem, M., and Atlas, R., 1979. Time-Continuous Assimilation of Remote-Sounding Data 
and Its Effect on Weather Forecasting. Monthly Weather Review, vol. 107, pp. 140-171. 

Glahn, H. R. and Lowry, D. A., 1972. The Use of Model Output Statistics (MOS) in Objective 
Weather Forecasting, Journal of Applied Meteorology, pp. 1203-1211. 

Horikawa, A., Furuhashi, T. and Uchikawa, Y., 1992. On Fuzzy Modeling Using Fuzzy Neural 
Networks with the Back-Propagation Algorithm. IEEE Transactions On Neural Networks, vol. 
3, no. 5, pp. 801-806. 

Jain, L. C. and Martin, N. M., 1998. Fusion of Neural Networks, Fuzzy Systems and Genetic 
Algorithms: Industrial Applications. CRC Press LLC., Florida, USA. 

Kalnay, E., Kanamitsu, M., and Baker, W. E., 1990. Global Numerical Weather Prediction at the 
National Meteorological Center, Bulleting American Meteorological Society, vol. 71, no. 10, 
pp. 1410-1428. 

Kasabov, N., 1996. Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering, 
The MIT Press, CA, MA. 

Klein, W. H. and Glahn, H. R., 1974. Forecasting Local Weather by Means of Model Output 
Statistics, Bulleting American Meteorological Society, vol. 55, no. 10, pp. 1217-1227. 

Klein, W. H., Lewis, B. M. and Enger, I., 1959. Objective prediction of five-day mean temperatures 
during winter, Journal of Applied Meteorology, vol. 16, pp. 672-682. 

Lee, C. H., and Teng, C. C., 2000. Identification and control of dynamic systems using recurrent 
fuzzy neural networks, IEEE Trans. on Fuzzy Systems, vol. 8, no. 4, pp. 349-366. 

Lin, C. T., Chang, C. L., and Cheng, W. C., 2004. A recurrent fuzzy cellular neural network system 
with automatic structure and template learning, IEEE Trans. on Circuits and Systems I, vol. 51, 
no. 5, pp. 1024-1035. 

Lorenz, E., 1977. An experiment in nonlinear statistical weather forecasting, Monthly Weather 
Review, vol. 105, pp. 590-602.  

Madan, M. G., Liang, J., and Noriyasu, H., 2003. Static and Dynamic Neural Networks. John Wiley 
and Sons, Inc., New York, USA. 

Mandic, D. P. and Chambers, J. A., 2001. Recurrent Neural Networks for Prediction. John Wiley & 
Sons, Ltd., West Sussex, England. 

Marchuk, G. I., 1970. Numerical Methods of Weather Forecasting, Oceanography and Atmospheric 
Science: Meteorology – Storming Media, 396 pp. 

Medsker, L. R. and Jain, L. C. 2001. Recurrent Neural Networks: Design and Applications. CRC 
Press LLC, Florida, USA. 

Qian, N., 1999. On the momentum term in gradient descent learning algorithms, Neural networks, vol. 
12, pp. 145-151. 

Roads, J. O., 1986. Forecasts of time averages with a numerical weather prediction model, Journal of 
Atmospheric Science, vol. 43, pp. 871-892. 

Toth, Z., 1989. Long-Range Weather Forecasting Using an Analog Approach, Journal of Climate, 
vol. 2, pp. 594-607. 

Vislocky, R. L. and Fritsch, J. M., 1997. Performance of an Advanced MOS System in the 1996–97 
National Collegiate Weather Forecasting Contest, American Meteo.  Society, pp. 2851-2857. 

 
International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences 2008 


